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Three-Dimensional Eulerian Approach to Droplet
Impingement Simulation Using FENSAP-ICE,

Part 1: Model, Algorithm, and Validation

Yves Bourgault,¤ Ziad Boutanios,† and Wagdi G. Habashi‡

Concordia University, Montreal, Quebec H3G 1M8, Canada

To realistically compute three-dimensional droplet impingement on aircraft and engines, an Eulerian model for
diphasic air� ows containing water droplets is proposed as an alternative to the traditional Lagrangian particle
tracking approach. The partial differential equations-based model is presented, together with details on the nu-
merical methods and its algorithmic implementation in three dimensions within the � nite element Navier–Stokes
analysis package for icing. Code validations in two and three dimensions are presented in comparison with pub-
lished NASA experimental impingement results, and numerical accuracy requirements are discussed.

Nomenclature
CD = spherical droplet drag coef� cient
cu , c k u = stabilizationparameters for u
c a , ck a = stabilizationparameters for a
d = droplet diameter
Fr = Froude number, U 1 /

p
(Lg0)

f = right-hand side of droplet momentum equation
g0 = gravitational acceleration, 9.8 m/s2

h K = size of element K
K = droplet inertia parameter, q d2U 1 / 18L l
L = reference length of the geometry
N = space dimension; equal to 2 for two dimensions, 3 for

three dimensions
n = normal vector to the domain (CAD) surface
nh = normal vector to the surfacic grid
ñh = vector orthogonal (nonnormalized) to the surfacic grid
Red = droplet Reynolds number, q adU 1 j ua ¡ u j / l
U 1 = reference velocity
u = nondimensionalvelocity of droplets
ua = nondimensionalvelocity of air
un = droplet velocity at the time step n
k u k 1 ,K = maximum of the Euclidean norm of the droplet

velocity on element K
Vh = � nite element space
x = parametric representationof the element face, x(u, v)
xi = surfacic grid node
xu , xv = u and v derivativesof the parametric function
a = droplet volume fraction
a n = droplet volume fraction at the time step n
b = local collection ef� ciency
D t = local time step seen as a function of grid nodes
D tK = local time step on element K
D tmax = truncation maximal local time step allowed
² = turbulent dissipation
j = turbulent kinetic energy
k = target Courant–Friedrichs–Lewy number
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l = dynamic viscosity of air
q = density of water
q a = density of air
s K = streamline upwinding Petrov–Galerkin stabilization

function on element K
} = mass � nite element test functions
w = momentum � nite element test functions
X = spatial � ow domain

I. Introduction

A IRCRAFT in-� ight icing remains an operationaland certi� ca-
tion issue that is far from being completely resolved. Recent

trends in the aviation industry, such as the advent of lower altitude
regionalaircraft,have increased the potentialfor icing incidentsand
accidents. In addition, the suspicion about the dramatic effects of
supercooled large droplets has forced the icing community to re-
consider certi� cation minimum requirements and to re-evaluate the
icing environment and the simulation tools used to comply with
those requirements.Such concernshave reanimated the research,as
well as the review of engineering and certi� cation efforts to tackle
the in-� ight icing problem.1

One of the urgent needs identi� ed is for improved numerical
simulation that could lead to better designs and shorter certi� cation
through the investigation of a broader catalog of icing scenarios.
Such improved simulation not only calls for better physical model-
ing of icing phenomena, but also for the introductionof more mod-
ern computational � uid dynamics (CFD) approaches.2 The need to
investigate complex three-dimensional geometries such as engine
inlets, nacelles, swept wings, empennages, radomes,and even com-
plete aircraft, however, task the geometric capabilities of current
icing simulation codes.

Today’s icing physical models, numerical methods, software im-
plementation, and design integration methods have some catching
up to do with the achievements in aircraft � ow simulation and in
the numerical design of gas turbine engines. To demonstrate this
assertion, one only has to compare the general review of icing nu-
mericalmodelsgiven in a recentAGARD report2 to a similar review,
done at about the same time, of simulation techniques for propul-
sion systems.3 Advanced CFD algorithms and turbulence models,
conjugate heat transfer (simultaneous solution of � uid–solid heat
transfer), CAD-based representation, concurrent engineering de-
sign approaches, multidisciplinaryoptimization,high-performance
computing, advanced scienti� c visualization,now part of the daily
culture of the aerodynamicdesign process, have not yet completely
found their way in the icing analysis–design–certi� cation loop.

Icing is still being treated as a post-aerodynamic design exer-
cise, leading to a disconnectionof the aerodynamicsand icing. This
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segregation has thus led icing simulation codes to evolve indepen-
dently from the CFD class of codes most commonly used in the
aerodynamicdesign process in industry,proprietaryor commercial,
leadingto dif� culties in formulatinga combinedaeroicingapproach
or even creating easy interfacing via independentmodules.

A comprehensive in-� ight icing simulation capability requires,
at a minimum, codes or modules for droplet impingement limits,
accreted ice shape prediction, de- and anti-icing heat loads, and
performance degradation calculations. Flow analysis for impinge-
ment calculationsare currently being carried out by incompressible
potential (panel methods) or compressible inviscid (Euler) meth-
ods, interactively coupled with boundary-layer (BL) techniques.4,5

Droplet tracking is done through a Lagrangian approach, some of
whose limitations will be detailed later. Accreted ice shapes are
also predicted with inviscid � ow plus BL-based icing codes6 ¡ 8 or
experimentally in icing tunnels.7 ¡ 12 Heat transfer calculations, as
well as performance degradation assessments, are also mostly car-
ried out throughviscous–inviscid interactioncodes. In addition, the
thermodynamic analysis of ice accretion is mostly done in two di-
mensions, by using a two-dimensional code along cuts or the sur-
face streamlines.13,14 Finally, note that when a method is liberally
labeled three dimensional in icing research it most likely indicates
an attempt at quasi three dimensionality through a series of patches
and compromises, somewhat different from what aerodynamicists
understand a truly three-dimensionalanalysis to be.

Thus, no capability readily exists to simulate the impingement–
accretion–de-icingprocessesas the coupled,three-dimensional,vis-
cous, compressible, turbulent, unsteady phenomena they truly are.
The argument for the continuing use of viscous–inviscid inter-
action solvers is that satisfactory results have been obtained on
airfoils,8,15 ¡ 17 and thus, the high cost associated with turbulent
� ow simulations is not justi� ed, especially in three dimensions.6

However, lack of cost-effectiveness arguments, repeated over two
decades, now sound hollow and have a natural way of being seen
to be out of context: Ef� cient Navier–Stokes simulation techniques
are here, now, and are here to stay.

Many serious pitfalls are hidden in today’s simplistic icing sim-
ulation approaches, and one can only hope to scratch the surface
in this Introduction. The computation of droplet impingement by
a Lagrangian tracking approach introduces a different numerical
technique than the � ow solver, with the consequence that some ic-
ing codes can require up to � ve grids.4 This hit-or-miss method
requires the painstaking launching of individual droplets upstream
of an object and tracking each droplet to determine if, and then
where, it hits the object. Panel methods are often used to calculate
the � ow because they are cost effective for surface velocities.How-
ever, a Lagrangian tracking method requires the determination of
the velocity along a droplet’s path, necessitating the summation of
all panels’ contributions,on all surfaces, for each point of the arbi-
trary path, something that is fairly expensive. Ways and means can
be found to speed up the velocity spatial recovery from the panels,
such as the use of Cartesian grid to precalculatethe velocityvectors
in three-dimensionalspace prior to the Lagrangiandroplet analysis.
Then the velocitiescan be interpolatedfrom the Cartesiangrid along
the trajectories whenever needed. Nevertheless, this remains an in-
ef� cient patch to continue using an imposed method. Furthermore,
once particles hit the geometry, the collection ef� ciency is recov-
ered through an averaging process that has to be carefully de� ned
and implemented in three dimensions so as to avoid an inordinate
number of particles to be launched.4,13 The accuracy of determining
impingement limits also depends on the density and placement of
launched particles and on the ability to calculate impingement on
components in the aerodynamic shadow of others, such as the main
wing or a � ap in the shadow of their deployed slat during climb
or descent. Finally, the traditional plague of panel-based methods
is that results can seldom be improved by mesh re� nement (panels
would blow up), making the accuracy of a particle trajectory as it
approaches the surface singularities, especially at the crucial limits
of impingement, at best, doubtful.

As for ice accretion, most available analyses are based on very
simple unidimensionalcontrolvolumebalanceapproachesthat can-

not accurately account for many of the geometrically induced fea-
tures of the complex freezing–melting–runback–beading process.
For heat loads, convective heat transfer coef� cients used in icing
codes are based on tuned correlations6,18 that cannot cover the en-
tire spectrumof icingconditionsand that are not readilyavailablefor
three-dimensional geometries. Such limited approaches may have
served their course in giving qualitativeassessmentsof heat transfer
in simple geometries and must now cede their place to established
modern methods for quantitative predictions of complex de- and
anti-icing devices.

As demand grows for realistic and reliable icing simulation on
complex three-dimensional geometries and passages, it is increas-
ingly evident that three-dimensional Navier–Stokes � ow and heat
transfer approaches are the answer. This is more true if the focus is
not only design but also optimization. This class of solvers would
also make it possible to use the same code for external icing (wing,
fuselage, nose cone, radomes, probes, etc.) internal icing (engine),
and, ultimately, to analyze the aircraft, engine or both, as systems.
CFD advances in large-scalesolvers, turbulencemodeling and their
implementation,unstructuredmeshes andautomatedadaptation,are
the de facto design norm and are rapidly becoming the aeronautics
industry’s norm.Their introductionin the icingarenacan only go to-
ward a much needed tighter integrationof icing-relatedphenomena
with the aerodynamic design process.

Thus, it is abundantly clear that the eclectic array of simulation
tools now available to analyze the major aspects of icing will even-
tually be replaced by a modular multidisciplinaryapproach, whose
cornerstones could be anticipated to be the following.

1)Multiphase� owsolvers(air/dropletsmixture)for impingement
could replace the potential � ow plus Lagrangian trackingapproach.

2) A more complete ice accretion model can account for all mass
and heat transfer mechanisms and accurately predict ice shapes in
three dimensions (effectively two dimensions, on the surface of the
ice-accreting object). In addition, the model would be an unsteady
one, continually tracking the ice-accreting free surface and auto-
matically modifying the mesh through moving grids.19

3) Use conjugate heat transfer to calculate simultaneously the
� ow inside and outside the wing, as well as conduction through its
skin.This approachwould dispensewith correlationsandeventually
lead to major optimization bene� ts.

4) Use Navier–Stokes analysis to estimate performancedegrada-
tion, with accuracy sharpened via automatic mesh adaptation.

In a series of successive papers, the CFD Laboratory proposes to
present the scienti� c advances incorporated in the modules of the
� nite element Navier–Stokes analysis package for icing (FENSAP-
ICE). The two-part � rst paper addresses the development and vali-
dation of the Eulerian droplet impingement model as an alternative
to the Lagrangian particle tracking techniques.The approach is val-
idated through comparison to published experimental results on a
two-dimensional cylinder and a three-dimensional sphere. Part 2
will examine the connection of the simulation methodology to ac-
tual � ight conditionsby analyzingimpingementpatternson the nose
and cockpit of an aircraft, the Convair-580 used by the Canadian
Atmospheric Environment Service to collect in-� ight icing data,
for the Canadian freezing drizzle experiment held in the winter of
1997–1998.

II. Three-Dimensional Eulerian Model
for Droplet Impingement

The droplet impingement module in FENSAP-ICE, DROP3D,
is based on an Eulerian model, has been introduced for two-
dimensional applications by Bourgault et al.,20 and is brie� y re-
viewed here for completeness.This is essentially a two-� uid model
consistingof the set ofNavier–StokesorEuler equations,augmented
by droplet-related continuity and momentum equations. The latter
are, in nondimensional form, respectively,

@ a

@t
+ r ¢ ( a u) = 0 (1)

@u
@t

+ u ¢ r u = (CD Red / 24K)(ua ¡ u) + (1 ¡ q a / q )(1/ Fr2)g (2)
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where thevariables a (x , t ) andu(x , t) aremeanvalues,respectively,
of the water volume fractionand of the droplet velocityover a small
� uid element around the location x at time t . In these equations,
CD = (24/ Red )(1 + 0.15Re0.687

d ) for Red ·1000 is an empirical
drag coef� cient for spherical droplets. The � rst term on the right-
hand side of Eq. (2) represents the air drag force on the droplets,
whereas the secondterm representsthe buoyancyand gravity forces.
The two-� uid model assumes sphericaldropletsof one size, usually
chosen equal to the median volume diameter (MVD) of the sample
size distribution. Handling multiple droplet sizes has been done
by duplicating the number of equations solved, using the system
once for each class of diameters. No collision or mixing between
the droplets is accounted for because it can be shown not to be
important for icing situations.

The Lagrangian tracking method requires the integrationof indi-
vidual droplet trajectoriesfrom a computationaldomain inlet to the
impactedgeometry’s surface,somethingthatmight give rise to elab-
orate algorithmic developments and large computational resources
for complex three-dimensionalgeometries. Indeed, a large number
of particles may have to be launched for impingement analysis on
geometries with small intricate details. On the other hand, an Eu-
lerian model based on partial differential equations is discretized
with the same numerical techniques as the companion (� eld) � ow
solver and uses the same grid. The collection ef� ciency recovery
on the walls is as simple as the pressure coef� cient computation
from the � ow solution. It involves standard � ow postprocessing.
Of course, for simple geometries such as single element airfoils, a
Lagrangian method provides the collection ef� ciency by tracking
20–40 droplets, as opposed to an Eulerian approach that requires
solving the system of Eqs. (1) and (2) over the whole grid. In such
simple situations, Lagrangian tracking would be the most ef� cient.
However, a complete contrast of the performance of both methods
must include considerationson the complexity of the geometry and
whether a local assessment of the impingement, for example, only
on a given section of a wing, or a more global picture, for example,
over a whole aircraft, is needed. Each method has the potential to
give a partial or a global picture, but one of the two methods will
be more ef� cient for a given purpose on a given geometry with a
required amount of detail.

One advantage of the Eulerian approach is its ability to do a re-
verse analysis (where does a droplet that impinges come from?)
directly in the postprocessor by observing the streamlines of the
droplet velocity � eld ending at a given location on the wall (in
the steady case at least). This is to be compared to the multiple
shooting methods needed with the Lagrangian tracking; that is, the
reverse analysis could only be done by computing a droplet tra-
jectory in a direct fashion starting from a guessed initial position,
updating the initial position on the basis of the difference between
the expected and the actual impingement locations, and repeat-
ing these operations until the expected and actual � nal positions
agree.

III. Algorithmic Implementation
The solution a and u of the Eulerian droplet model are made

based on a precalculated inviscid or viscous air� ow. However, us-
ing an inviscid � ow may result in inaccurate impingement patterns
in situationswhere viscous effects are dominant, for example, with
separated � ows. In many cases, however, such as those close to
cruise conditions for aircraft, neglecting the BL should have neg-
ligible effects on the quality of the collection ef� ciency, as will be
demonstrated by the validation test cases.

The generalapproachto impingementcomputationsis as follows:
Starting from a CAD model, generate a structured or unstructured
grid with a mesh generation package (in our case we use ICEM
CFD); compute a fully converged viscous or an inviscid � ow solu-
tion with a CFD analysis package (in our case, we use our propri-
etary FENSAP); by using the same mesh as for the air� ow solution,
compute droplet solutionsand impingementpatternswith DROP3D
(seen as a plug-in module to FENSAP or any other � ow code); then
use a � ow visualizer to analyze the droplet solution and impinge-
ment patterns. For a distribution of droplet sizes, one computes as

many droplet solutions as there are size classes and postprocesses
the collection ef� ciencies from all classes to recover a compound
collection ef� ciency.

In the following, the different features of the � ow solver are � rst
reviewed, and then the numerical ideas behind the implementation
of DROP3D are presented:in particular,the stabilized� nite element
used, the three-dimensionalrecoveryof the collectionef� ciency, the
iterative solver, and the local time-stepping techniques.

A. FENSAP Navier–Stokes Module

FENSAP has capabilities for analyzing steady or unsteady com-
pressible turbulent � ows, with or without recirculationregions, and
can revert to inviscid � ow simulation as an option, whenever this
assumptionproves suf� cient in a given situation.The same � exibil-
ity is built in with respect to two-dimensional vs three-dimensional
simulations: the code being a fully three-dimensionalone but with
a capability to analyze two-dimensional � ows. The following al-
gorithmic developments in FENSAP make a three-dimensional
Navier–Stokes approach affordable and cost effective.

1) There are capabilities for structured and unstructured grids,
based on hexahedral/tetrahedral/prismatic � nite elements, with the
geometrical � exibility needed for complex industrial applications.

2) Implicit time-stepping methods are used combined with ef-
� cient iterative solvers and preconditioners (such as an algebraic
multigrid preconditioner) with optimized memory requirements.

3)Largeportionsof thecodehaveshared-memoryparallelization.
4) A j –² high-Reynoldsnumber turbulencemodel with logarith-

mic � nite elements at the walls considerably reduces the size of the
necessarygrids for turbulent� ows. In addition, low-Reynoldsnum-
ber models are available to examine the near-wall detailed physics
of � ows over surfaces with sand-paper roughness.9

5) There is arbitrary Lagrangian–Eulerian formulation for prob-
lems with changing boundaries,21 such as in ice-growth situations.

Moreover, the code is interfaced with an ef� cient anisotropic
mesh optimization methodology (MOM3D) package, also devel-
oped at the CFD Laboratory, that has been shown to give highly ac-
curate user-, solver-, and initial mesh-independentresults in two-22

and three dimensions.23

B. DROP3D: Finite Element Method

A � nite element Galerkin formulation is used to numericallydis-
cretize Eqs. (1) and (2), with a streamline upwind Petrov–Galerkin
(SUPG)24 term added. In the Galerkin approach,given a mesh over
a domain X and the space Vh of continuous piecewise linear ele-
ments (quasi linear for bricks), the volume fraction a n 2 Vh and the
droplet velocity un 2 V N

h at time t n are solutions of

*
X
[ a n ¡ a n ¡ 1

D t
+ r ¢ ( a nun)] } dx + a a ( a n , } ) = 0 (3)

*
X
[ un ¡ un ¡ 1

D t
+ un ¢ r un] ¢ w dx + au (un , w ) = *

X

f ¢ w dx

(4)

for all } 2 Vh , w 2 V 3
h . Here, f are the drag and gravity forces on

droplets and, thus, depend on u and ua .
The expressions a a (¢ , ¢ ) and au(¢ , ¢ ) are the SUPG stabilization

terms just mentioned. These terms are written as

a a ( a , } ) = ca ^
K

*
K
[ a n ¡ a n ¡ 1

D t
+ r ¢ ( a nun )] s K (un ¢ r ) } dx

(5)

au (u, w ) = cu ^
K

*
K
[un ¡ un ¡ 1

D t
+ un ¢ r un ¡ f] ¢ s K (un ¢ r ) w dx

(6)

with s K equal to hK /
p

(1 + j u j 2) and c a and cu parameters chosen
by the user. It is mainly the volume fraction that requires some
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extra stabilizationbecause the velocity itself suffers little numerical
instability. As a result, the parameter cu is usually chosen smaller
than c a , with cu usually in [0.1, 10] as opposed to ca in [1, 100] but
very oftenwith c a ¼ 2cu . The oscillationson the volume fractionare
mainly due to the highly nonlinearconvectivenature of the Eulerian
droplet model.

By examining three-dimensionalresults, it becomes evident that
arti� cial viscosity strictly along the dropletsstreamlinedirection,as
provided by an SUPG method, may not be enough for some situa-
tions.An exampleoccurswhen a relativelycoarsegrid is not aligned
with a contact discontinuity appearing in the droplet solution. In
that case, the volume fraction of water is discontinuouswhile cross-
ing the contact discontinuity,but the droplet velocity is continuous
and aligned with that curve. The result of the SUPG stabilization
is the addition of arti� cial viscosity along the discontinuity curve
only, without any crosswind diffusion, although some stabilization
effectsmay still be needed in that direction.For thesevery rare occa-
sionswhere crosswinddiffusion is needed (as observed in practice),
discontinuity-capturing terms25,26 have been added to the � nite el-
ement formulation.27 They are rarely used in our calculations and,
when used, are used with great moderation.

The terms a k a (¢ , ¢ ) and a k u (¢ , ¢ ) are the discontinuity-capturing
crosswind diffusion terms and are expressed as

a k a ( a n , d } ) =

c k a ^
K

*
K
[ a n ¡ a n ¡ 1

D t
+ r ¢ ( a nun )] s K (un

k a ¢ r ) } dx (7)

a k u (un , d w ) =

c k u ^
K

*
K
[ un ¡ un ¡ 1

D t
+ un ¢ r un ¡ f] s K (un

k u ¢ r ) w dx

(8)

where c k a and c k u are user-speci�ed parameters as multiples of ca

and cu , respectivelyand un
k a and un

k u are calculatedusing the expres-
sion

un
k x = { (u ¢ r xh )

j r xh j 22
r xh if r xh 6= 0

0 if r xh = 0 (9)

C. DROP3D: Recovering the Collection Ef� ciency

An importantparameter that controls the accretionof ice on a sur-
face is the local collection ef� ciency b , that is, the normalized � ux
of water on the surface. The droplet solution yields a and u every-
where in the solution domain, and the surface collection ef� ciency
b can then be calculated as

b = ¡ a u ¢ n (10)

where n is the surface normal into the computational domain at
mesh points on solid boundaries.

There is a dif� culty in de� ning the normal n at a mesh point on
the wall. On an element face, the normal vectorcomes naturallyinto
play and is uniquely de� ned as follows:

n =
xu £ xv

k xu £ xv k
(11)

where x = x(u, v) is a parametric representationof that face and xu

(xv ) is the derivative of the parametric function with respect to u
(v). It is implicitly understood through that de� nition that the pa-
rameterization of the surface is continuously differentiable. For a
discretized boundary, however, at least three element (wall) faces
meet at any grid node on a wall, preventing in most cases the conti-
nuity of the parameterizationderivativeson edges between adjacent
faces. In the two-dimensionalimplementationof the Eulerianmodel
(DROP2D), collection ef� ciencies have been computed at the cen-

ter of the edge on the solid boundaries and then transformed into
values at the wall nodes by averaging the values on adjacent edges
using the length of the edges as weighting factors. That strategy
could probably be implemented in three dimensions, but a simpler
technique has been adopted.27

To turn around the normal discontinuityproblem in three dimen-
sions, a discrete normal nh has been de� ned at the grid node xi as
the normalized vector,

nh = ñh / k ñh k (12)

with

ñh = ^
@K neighbor of xi

@K on the wall

ai £ bi (13)

and @K a boundary face of the element K , and with ai and bi the
two edges on that face starting from xi such that their cross product
points into the computational domain. The vector ñh is nothing but
the weighted average of the normal vectors of all of the wall faces
around the node xi , with the weights being equal to the area of the
faces. Hence, by re� ning of the grid, the vector nh converges to
the actual normal n(xi ), except on sharp edges of a CAD surface
where the continuousnormal n is not de� ned, although the discrete
normal nh is. On such sharp edges of a CAD model one should
expect nh to be at best the average of the normal vector on both
sides of the edge.

By replacing the continuous normal n by the discrete normal nh

in Eq. (10), a good approximationof the collectionef� ciency can be
computed. According to the discussion on the value of nh on sharp
edgesof a CAD geometry, some precautionshould be takenon such
sharp edges when interpreting the computed collection ef� ciency.

D. Iterative Solution and Local Time Stepping

The � nite elementformulation[Eqs. (3) and (4)] is implicit in time
and requires the solution of a nonlinear system at each time step.
The systemis linearizedusing a Newton–Raphsonmethod.Usually,
a linear system, whose matrix is the Jacobian of the nonlinear sys-
tem of equations, is solved for each Newton step. However, instead
of computing this Jacobian directly, an iterative solver is used that
requiresonly the productof the Jacobianwith a vector, and then this
matrix–vectorproductis approximateddirectlyby a � nite difference
formula. This has been possible because the linear system is solved
through a generalized conjugate gradient iterative method based
on descent directions, in our case the generalized minimal residual
(GMRES) method. The combination of the Newton–Raphson with
the � nite difference approximation of the Jacobian-vectorproduct
is often called the nonlinear GMRES method.28

The nonlinear GMRES method is used in DROP3D in conjunc-
tion with a diagonal preconditioner. In general, 1–3 Newton iter-
ations, with 20–50 descent directions per time step, are suf� cient
to guarantee the convergence of the iterative solver at each time
step. With such strategy it is possible to tackle three-dimensional
test cases (engine inlet and nacelle, aircraft nose and cockpit,wing,
etc.) with grids of several hundred thousand nodes using less than
half a gigabyte of RAM.

A steady solution of the Eulerian model is reached by iterating
in time. Steadiness rapidly occurs in the impingement area simply
becausethe informationtravelsalong the streamlinesfromupstream
to downstreamfor the Eulerian model and the exposed surfaces are
located upstream. The critical region for convergence in time to
the steady state is the wake behind the geometry, where the water
dropletsaremore progressively,and hencemore slowly,washedout.

To attain the steady-state faster over the entire computational
domain, a local time-stepping strategy has been implemented. It
consists in computing a local time step D tK on each element K , for
example, using

D tK =
k h K

max( k u k 1 , K , k hK / D tmax)
(14)
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Fig. 1a PTCE.

Fig. 1b Variation of the TCE line A, maximum line B, and Euclidean
line C norm of the variation of the local catch ef� ciency from time step
to time step.

where k is the targetCourant–Friedrichs–Lewy numberand D tmax is
a truncationmaximal time step.Both k and D tmax are speci� edby the
user, in practice of the order of 2–1000 and 100–1000, respectively,
depending on the stiffness of the problem.

The local time step is more or less set so that the information
associated with the solution of the Eulerian model travels locally
through k elements at each time step. Before its use in the scheme,
Eqs. (3) and (4), the time step D tK is locally transported to neigh-
boring nodes by averagingthe D tK over all of the element K neigh-
boring a node using the volume of the element as a weighting
factor.

Figure 1 shows the evolution of the total catch ef� ciency (TCE)
as a function of the number of time steps fot the two-dimensional
cylinder test case, where each time step is 10-s CPU time. The
TCE is the integral of the collection ef� ciency coef� cient over the
whole surface. In other words, the TCE is the total mass � ux of
water impinging on the geometry, scaled by the liquid content of
the cloud(LWC) £ U 1 . By comparingthevariationof the TCE from
time step to time step with the norm (maximum and Euclidean) of
the local catch ef� ciency again from time step to time step (Fig. 1b),
it should be expected that the TCE is a good indicator of the code’s
convergence. That is, the convergenceof the local catch ef� ciency
seems to be closely connected with the convergence of the global
catch ef� ciency. As can be seen from the graphs, four local time
steps are enough to guarantee the convergence of the TCE for that
simple example. The variation of the TCE from time step to time
step is of the order of 0.1% of the � nal TCE only after the � rst four
time steps. Usually some more iterations are done to account for
potential local variation of the collection ef� ciency that may not be
seen in the TCE.

To further improve the computing ef� ciency of DROP3D, a grid
coloring scheme has been implemented to parallelize the assembly
of the residual of the nonlinear system. This has proved suf� cient
on shared-memorycomputerswith less than 16 CPUs, inasmuch as
most of theeffort is spent in computingresidualsinsidethenonlinear
GMRES routine.

IV. Validation Test Cases
Two test casesfromthe literaturehavebeenselectedto validatethe

impingementcode.The � rst one is a two-dimensionalcylinder taken
from Ref. 5, and the second one is a three-dimensionalsphere taken
from Bidwell and Mohler.29 These test cases were selected because
the geometries are nonproprietaryand fairly accurate experimental
data are available in the public domain. The matrix of the validation
test case conditions is detailed in Table 1.

The two-dimensional cylinder and three-dimensionalsphere ge-
ometries were built with B-spline surfaces and curves inside cir-
cular domains. To do so, the CAD system used is ICEM-CFD’s
DDN module, which is an integral part of a CAD/mesher package
commercialized by ICEM CFD Engineering. Inviscid air� ow nu-
merical solution were obtained for the test cases using FENSAP, as
only droplet impingement is investigated in this paper. Of course,
as stressed in the Introduction, an inviscid � ow solution would not
be suf� cient for a complete icing analysis.

The meshes used for the calculations consist of bilinear hexahe-
dral elements: a 17,168-nodemesh for the cylinder and a 201,735-
node mesh for the sphere (see Fig. 2). Inviscid � ow solutions have
been obtained on both grids, and results are presented in the fol-
lowing subsections.Droplet solutionspresented in this section have
been calculated for MVD solutions and Langmuir-D distributions.
The complete details on the validation are given by Boutanios.27

A. Two-Dimensional Cylinder

DROP3D was validated in two dimensions using experimental
results from Ref. 5 for impingement data on the surface of a two-
dimensional cylinder. The air and droplet � ow parameters are given
in Table 1 in the column labeled “Cylinder.”

Figure 3 shows the pressure isolines for the inviscid air� ow
around the two-dimensionalcylinder.Figure 4 shows the collection
ef� ciency pro� les for the MVD =16 l m solution and the result-
ing solution of a Langmuir-D distribution with an MVD of 16 l m,
respectively. The details of the Langmuir-D distribution are given
in Table 2. Not much difference can be seen, and the two solutions
are indeed similar. However, should one plot the collection ef� -
ciency on the surface of the cylinder for both cases and compare to
experimental results,5 some differences come to light. Such a plot
is shown in Fig. 5, and it can be seen that the Langmuir-D distri-
bution is slightly more effective than the MVD solution in match-
ing the experimental data. The solution based on the Langmuir-D
distribution captures both maximum collection ef� ciency and im-
pingement limits values and stays within the experimental repeata-
bility range. The MVD solution, on the other hand, overestimates
the maximum impingementvalue, underestimatesthe impingement

Table 1 Matrix of validation test cases

Parameters Cylinder Sphere

Reference length, m 0.1016 0.1504
Airspeed, m/s 80 75
Static temperature,±C 12 7
Static pressure, Pa 89,867 95,840
MVD, l m 16.0 18.6

Table 2 Langmuir-D distribution of droplet
diameters with an MVD of 16 ¹m as used
for the two-dimensional cylinder test case

Percentage Ratio of Droplet
LWC diameters diameter, l m

5 0.31 5.0
10 0.52 8.3
20 0.71 11.4
30 1.00 16.0
20 1.37 21.9
10 1.74 27.8
5 2.22 35.5
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Fig. 2 Cylinder (left) and sphere mesh (right) for inviscid air� ow solutions.

Fig. 3 Pressure distribution for inviscid � ow solution around the two-dimensional cylinder (left) and the three-dimensional sphere (right).

limits, and exceeds the experimental repeatability range in some ar-
eas. One can conclude that DROP3D is capableof providingquality
two-dimensional droplet impingement data and that the quality of
the results improves by using an adequate droplet size distribution
rather than simply the MVD of the distribution.This last conclusion
is not new and is also true with Lagrangianmethods on such simple
geometries.30

B. Three-Dimensional Sphere

To validate the impingement module in three dimensions, exper-
imental results on a three-dimensionalsphere29 test case were used.
The experimental air and droplet � ow� elds parameters are given in
Table 1 in the “Sphere” column.

An inviscidair� ow solutionwas carriedoutusingthe mesh shown
in Fig. 2, with the pressure pro� le from this solution shown in
Fig. 3. Figure 6 shows the surface collection ef� ciency on the
sphere, as calculated in DROP3D for the MVD = 18.6 l m so-
lution and the Langmuir-D distribution with the same MVD, re-
spectively. The details of the Langmuir-D distribution are given
in Table 3. As with the two-dimensional cylinder, the solutions
look qualitatively similar. Figure 7 compares the experimental data
with both MVD and Langmuir-D distribution solutions. Again,
the Langmuir-D distribution is slightly better than the MVD so-
lution in matching the maximum collection ef� ciency and the im-
pingement limits. Both numerical curves show small excursions
outside the experimental range of repeatability, but the results are
quite satisfactory,particularly for the Langmuir-D distribution.The
discrepancies between numerical and experimental results can
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Fig. 4 Collection ef� ciency at the surface of a two-dimensional cylinder for one MVD = 16 ¹m solution (top) and a Langmuir-D distribution with
the same MVD (bottom).

Fig. 5 Comparison of collection ef� ciency on the surface of the two-
dimensional cylinder for the Langmuir-D distribution and the MVD
solution to experimental data.

probably be reduced with a more appropriate droplet distribution
such as the one measured in the icing tunnel during the experiment.
Note the followingcomments about problems encounteredwith ex-
perimental data not speci� cally obtained or documented for CFD
validation.

1) The experimental range of repeatability reported was an aver-
age over the whole range of measurements and not a local range as
for the cylinder data. A more accurate estimate of the experimental

Table 3 Langmuir-D distribution of droplet
diameters with an MVD of 18.6 ¹m as used
for the three-dimensional sphere test case

Percentage Ratio of Droplet
LWC diameters diameter, l m

5 0.31 5.8
10 0.52 9.7
20 0.71 13.2
30 1.00 18.6
20 1.37 25.5
10 1.74 32.4
5 2.22 41.3

range of repeatability would be desirable for better comparison to
numerical results.

2) The experimental data dates back to the mid-1950s, and re-
cent studies pointed to uncertainties in the data measurement tech-
niques31 resulting in over- and underestimation at different points
within the same set.

3) The exact droplet distribution found in the icing tunnel, again
as the experimental data dates back to the mid-1950s, is not given
and may not be known, so that the Langmuir-D distribution is a best
estimate of the actual distribution.

These remarksincreasethe levelof con� dencein DROP3D. Over-
all, one can say that the FENSAP-ICE droplet module, DROP3D,
is capable of providing quality results in three dimensions, at least
for similar geometries, given an adequate droplet distribution and
� ow experimental conditions.
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Fig. 6 Collection ef� ciency at the surface of a three-dimensional sphere for one MVD = 18.6 ¹m solution (left) and a Langmuir-D distribution with
the same MVD (right).

Fig. 7 Comparison of collection ef� ciency on the surface of the three-
dimensional sphere for the Langmuir-D distribution and the MVD so-
lution to experimental data.

V. Conclusions
The FENSAP-ICE three-dimensionaldroplet impingementmod-

ule,DROP3D, hasbeenshownto be a suitabletool to studywater im-
pingementoverarbitraryaerodynamicsurfaces.The coderesultsare
shown to be consistentwith experimentaldata both in two and three
dimensions. The advantage of DROP3D over current Lagrangian
codes is in its Eulerian formulation, where the impingement phe-
nomenon is represented in a natural and appropriate way by a set
of partial differential equations. More physics can be added to the
formulation as needed, and no particle tracking has to be done,
avoiding particle localization problems and uncertainties arising in
three-dimensionalsituations.

It has been shown that MVD solutions give less accurate ap-
proximationsof the droplet impingement coef� cient and that better
results can consistentlybe obtained with diameter distributions that
approach the actual one.
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