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Three-Dimensional Eulerian Approach to Droplet
Impingement Simulation Using FENSAP-ICE,
Part 1: Model, Algorithm, and Validation

Yves Bourgault,* Ziad Boutanios,” and Wagdi G. Habashi*
Concordia University, Montreal, Quebec H3G IMS, Canada

To realistically compute three-dimensional droplet impingement on aircraft and engines, an Eulerian model for
diphasic airflows containing water droplets is proposed as an alternative to the traditional Lagrangian particle
tracking approach. The partial differential equations-based model is presented, together with details on the nu-
merical methods and its algorithmic implementation in three dimensions within the finite element Navier-Stokes
analysis package for icing. Code validations in two and three dimensions are presented in comparison with pub-
lished NASA experimental impingement results, and numerical accuracy requirements are discussed.

Nomenclature
Cp = spherical droplet drag coefficient
Cus Cllu = stabilization parameters for u
Ca, Clo = stabilization parameters for o
= droplet diameter
Fr = Froude number, U,, / +/(Lg,)
f = right-hand side of droplet momentum equation
8o = gravitational acceleration, 9.8 m/s?
hy = size of element K
K = dropletinertia parameter, pd*Uy, / 18Lu
L = reference length of the geometry
N = space dimension; equal to 2 for two dimensions, 3 for
three dimensions
n = normal vector to the domain (CAD) surface
n, = normal vector to the surfacic grid
ny, = vector orthogonal (nonnormalized) to the surfacic grid
Rey, = droplet Reynolds number, p,dU,, |u, — u|/u
Us = reference velocity
u = nondimensional velocity of droplets
u, = nondimensional velocity of air
u" = droplet velocity at the time step n
[lllo x = maximum of the Euclidean norm of the droplet
velocity on element K
Vi = finite element space
X = parametric representation of the element face, x(u, v)
X; = surfacic grid node
X, X, = u and v derivatives of the parametric function
a = droplet volume fraction
o' = droplet volume fraction at the time step n
B = local collection efficiency
At = local time step seen as a function of grid nodes
Atk = local time step on element K
At = truncation maximal local time step allowed
€ = turbulent dissipation
K = turbulent kinetic energy
A = target Courant-Friedrichs-Lewy number
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u = dynamic viscosity of air

P = density of water

Pu = density of air

Tk = streamline upwinding Petrov-Galerkin stabilization

function on element K

mass finite element test functions
momentum finite element test functions
spatial flow domain
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I. Introduction

IRCRAFT in-flighticing remains an operational and certifica-

tion issue that is far from being completely resolved. Recent
trends in the aviation industry, such as the advent of lower altitude
regionalaircraft,have increased the potential for icing incidentsand
accidents. In addition, the suspicion about the dramatic effects of
supercooled large droplets has forced the icing community to re-
consider certification minimum requirements and to re-evaluate the
icing environment and the simulation tools used to comply with
those requirements. Such concerns have reanimated the research, as
well as the review of engineering and certification efforts to tackle
the in-flight icing problem.!

One of the urgent needs identified is for improved numerical
simulation that could lead to better designs and shorter certification
through the investigation of a broader catalog of icing scenarios.
Such improved simulation not only calls for better physical model-
ing of icing phenomena, but also for the introduction of more mod-
ern computational fluid dynamics (CFD) approaches? The need to
investigate complex three-dimensional geometries such as engine
inlets, nacelles, swept wings, empennages, radomes, and even com-
plete aircraft, however, task the geometric capabilities of current
icing simulation codes.

Today’s icing physical models, numerical methods, software im-
plementation, and design integration methods have some catching
up to do with the achievements in aircraft flow simulation and in
the numerical design of gas turbine engines. To demonstrate this
assertion, one only has to compare the general review of icing nu-
merical models givenin a recent AGARD report’ to a similarreview,
done at about the same time, of simulation techniques for propul-
sion systems.> Advanced CFD algorithms and turbulence models,
conjugate heat transfer (simultaneous solution of fluid-solid heat
transfer), CAD-based representation, concurrent engineering de-
sign approaches, multidisciplinary optimization, high-performance
computing, advanced scientific visualization,now part of the daily
culture of the aerodynamic design process, have not yet completely
found their way in the icing analysis-design-certification loop.

Icing is still being treated as a post-aerodynamic design exer-
cise, leading to a disconnectionof the aerodynamics and icing. This
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segregation has thus led icing simulation codes to evolve indepen-
dently from the CFD class of codes most commonly used in the
aerodynamicdesign process in industry, proprietary or commercial,
leadingto difficulties in formulatinga combined aeroicing approach
or even creating easy interfacing via independentmodules.

A comprehensive in-flight icing simulation capability requires,
at a minimum, codes or modules for droplet impingement limits,
accreted ice shape prediction, de- and anti-icing heat loads, and
performance degradation calculations. Flow analysis for impinge-
ment calculations are currently being carried out by incompressible
potential (panel methods) or compressible inviscid (Euler) meth-
ods, interactively coupled with boundary-layer (BL) techniques
Droplet tracking is done through a Lagrangian approach, some of
whose limitations will be detailed later. Accreted ice shapes are
also predicted with inviscid flow plus BL-based icing codes®™® or
experimentally in icing tunnels.”~'? Heat transfer calculations, as
well as performance degradation assessments, are also mostly car-
ried out through viscous-inviscid interaction codes. In addition, the
thermodynamic analysis of ice accretion is mostly done in two di-
mensions, by using a two-dimensional code along cuts or the sur-
face streamlines.!>!* Finally, note that when a method is liberally
labeled three dimensional in icing research it most likely indicates
an attempt at quasi three dimensionality through a series of patches
and compromises, somewhat different from what aerodynamicists
understand a truly three-dimensionalanalysis to be.

Thus, no capability readily exists to simulate the impingement-
accretion-de-icingprocessesas the coupled, three-dimensional, vis-
cous, compressible, turbulent, unsteady phenomena they truly are.
The argument for the continuing use of viscous-inviscid inter-
action solvers is that satisfactory results have been obtained on
airfoils #1717 and thus, the high cost associated with turbulent
flow simulations is not justified, especially in three dimensions?
However, lack of cost-effectiveness arguments, repeated over two
decades, now sound hollow and have a natural way of being seen
to be out of context: Efficient Navier-Stokes simulation techniques
are here, now, and are here to stay.

Many serious pitfalls are hidden in today’s simplistic icing sim-
ulation approaches, and one can only hope to scratch the surface
in this Introduction. The computation of droplet impingement by
a Lagrangian tracking approach introduces a different numerical
technique than the flow solver, with the consequence that some ic-
ing codes can require up to five grids.* This hit-or-miss method
requires the painstaking launching of individual droplets upstream
of an object and tracking each droplet to determine if, and then
where, it hits the object. Panel methods are often used to calculate
the flow because they are cost effective for surface velocities. How-
ever, a Lagrangian tracking method requires the determination of
the velocity along a droplet’s path, necessitating the summation of
all panels’ contributions,on all surfaces, for each point of the arbi-
trary path, something that is fairly expensive. Ways and means can
be found to speed up the velocity spatial recovery from the panels,
such as the use of Cartesian grid to precalculatethe velocity vectors
in three-dimensionalspace prior to the Lagrangiandroplet analysis.
Then the velocities can be interpolatedfrom the Cartesian grid along
the trajectories whenever needed. Nevertheless, this remains an in-
efficient patch to continue using an imposed method. Furthermore,
once particles hit the geometry, the collection efficiency is recov-
ered through an averaging process that has to be carefully defined
and implemented in three dimensions so as to avoid an inordinate
number of particles to be launched:*!* The accuracy of determining
impingement limits also depends on the density and placement of
launched particles and on the ability to calculate impingement on
components in the aerodynamic shadow of others, such as the main
wing or a flap in the shadow of their deployed slat during climb
or descent. Finally, the traditional plague of panel-based methods
is that results can seldom be improved by mesh refinement (panels
would blow up), making the accuracy of a particle trajectory as it
approaches the surface singularities, especially at the crucial limits
of impingement, at best, doubtful.

As for ice accretion, most available analyses are based on very
simple unidimensionalcontrol volume balance approachesthat can-

not accurately account for many of the geometrically induced fea-
tures of the complex freezing-melting-runback-beading process.
For heat loads, convective heat transfer coefficients used in icing
codes are based on tuned correlations®'® that cannot cover the en-
tire spectrumof icing conditions and thatare notreadily available for
three-dimensional geometries. Such limited approaches may have
served their course in giving qualitative assessmentsof heat transfer
in simple geometries and must now cede their place to established
modern methods for quantitative predictions of complex de- and
anti-icing devices.

As demand grows for realistic and reliable icing simulation on
complex three-dimensional geometries and passages, it is increas-
ingly evident that three-dimensional Navier-Stokes flow and heat
transfer approaches are the answer. This is more true if the focus is
not only design but also optimization. This class of solvers would
also make it possible to use the same code for external icing (wing,
fuselage, nose cone, radomes, probes, etc.) internal icing (engine),
and, ultimately, to analyze the aircraft, engine or both, as systems.
CFD advancesin large-scalesolvers, turbulence modeling and their
implementation,unstructuredmeshes and automated adaptation,are
the de facto design norm and are rapidly becoming the aeronautics
industry’s norm. Their introductionin the icing arena can only go to-
ward a much needed tighter integration of icing-related phenomena
with the aerodynamic design process.

Thus, it is abundantly clear that the eclectic array of simulation
tools now available to analyze the major aspects of icing will even-
tually be replaced by a modular multidisciplinary approach, whose
cornerstones could be anticipated to be the following.

1) Multiphase flow solvers (air/dropletsmixture) forimpingement
could replace the potential flow plus Lagrangian tracking approach.

2) A more complete ice accretion model can account for all mass
and heat transfer mechanisms and accurately predict ice shapes in
three dimensions (effectively two dimensions, on the surface of the
ice-accreting object). In addition, the model would be an unsteady
one, continually tracking the ice-accreting free surface and auto-
matically modifying the mesh through moving grids.!”

3) Use conjugate heat transfer to calculate simultaneously the
flow inside and outside the wing, as well as conduction through its
skin. This approachwould dispensewith correlationsand eventually
lead to major optimization benefits.

4) Use Navier-Stokes analysis to estimate performance degrada-
tion, with accuracy sharpened via automatic mesh adaptation.

In a series of successive papers, the CFD Laboratory proposes to
present the scientific advances incorporated in the modules of the
finite element Navier-Stokes analysis package for icing (FENSAP-
ICE). The two-part first paper addresses the development and vali-
dation of the Eulerian droplet impingement model as an alternative
to the Lagrangian particle tracking techniques. The approachis val-
idated through comparison to published experimental results on a
two-dimensional cylinder and a three-dimensional sphere. Part 2
will examine the connection of the simulation methodology to ac-
tual flight conditionsby analyzingimpingementpatternson the nose
and cockpit of an aircraft, the Convair-580 used by the Canadian
Atmospheric Environment Service to collect in-flight icing data,
for the Canadian freezing drizzle experiment held in the winter of
1997-1998.

II. Three-Dimensional Eulerian Model
for Droplet Impingement

The droplet impingement module in FENSAP-ICE, DROP3D,
is based on an Eulerian model, has been introduced for two-
dimensional applications by Bourgault et al.,”° and is briefly re-
viewed here for completeness. This is essentially a two-fluid model
consistingof the set of Navier-Stokes or Euler equations,augmented
by droplet-related continuity and momentum equations. The latter
are, in nondimensional form, respectively,

oa

§+V-(au)=0 (1)

aa—’t‘ +u-Vu=(CpRe /24K, —u) + (1 — p,/ p)(1/FA)g (2)
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wherethe variableso(x, t) andu(x, t) are mean values, respectively,
of the water volume fraction and of the droplet velocity over a small
fluid element around the location x at time ¢. In these equations,
Cp =(24/Rey)(1 + 0.15Re%%7) for Re, <1000 is an empirical
drag coefficient for spherical droplets. The first term on the right-
hand side of Eq. (2) represents the air drag force on the droplets,
whereas the second term representsthe buoyancy and gravity forces.
The two-fluid model assumes spherical droplets of one size, usually
chosen equal to the median volume diameter (MVD) of the sample
size distribution. Handling multiple droplet sizes has been done
by duplicating the number of equations solved, using the system
once for each class of diameters. No collision or mixing between
the droplets is accounted for because it can be shown not to be
important for icing situations.

The Lagrangian tracking method requires the integration of indi-
vidual droplet trajectories from a computational domain inlet to the
impacted geometry’s surface, something that might give rise to elab-
orate algorithmic developments and large computational resources
for complex three-dimensional geometries. Indeed, a large number
of particles may have to be launched for impingement analysis on
geometries with small intricate details. On the other hand, an Eu-
lerian model based on partial differential equations is discretized
with the same numerical techniques as the companion (field) flow
solver and uses the same grid. The collection efficiency recovery
on the walls is as simple as the pressure coefficient computation
from the flow solution. It involves standard flow postprocessing.
Of course, for simple geometries such as single element airfoils, a
Lagrangian method provides the collection efficiency by tracking
20-40 droplets, as opposed to an Eulerian approach that requires
solving the system of Egs. (1) and (2) over the whole grid. In such
simple situations, Lagrangian tracking would be the most efficient.
However, a complete contrast of the performance of both methods
must include considerationson the complexity of the geometry and
whether a local assessment of the impingement, for example, only
on a given section of a wing, or a more global picture, for example,
over a whole aircraft, is needed. Each method has the potential to
give a partial or a global picture, but one of the two methods will
be more efficient for a given purpose on a given geometry with a
required amount of detail.

One advantage of the Eulerian approach is its ability to do a re-
verse analysis (where does a droplet that impinges come from?)
directly in the postprocessor by observing the streamlines of the
droplet velocity field ending at a given location on the wall (in
the steady case at least). This is to be compared to the multiple
shooting methods needed with the Lagrangian tracking; that is, the
reverse analysis could only be done by computing a droplet tra-
jectory in a direct fashion starting from a guessed initial position,
updating the initial position on the basis of the difference between
the expected and the actual impingement locations, and repeat-
ing these operations until the expected and actual final positions
agree.

III. Algorithmic Implementation

The solution o and u of the Eulerian droplet model are made
based on a precalculated inviscid or viscous airflow. However, us-
ing an inviscid flow may result in inaccurate impingement patterns
in situations where viscous effects are dominant, for example, with
separated flows. In many cases, however, such as those close to
cruise conditions for aircraft, neglecting the BL should have neg-
ligible effects on the quality of the collection efficiency, as will be
demonstrated by the validation test cases.

The general approachto impingementcomputationsis as follows:
Starting from a CAD model, generate a structured or unstructured
grid with a mesh generation package (in our case we use ICEM
CFD); compute a fully converged viscous or an inviscid flow solu-
tion with a CFD analysis package (in our case, we use our propri-
etary FENSAP); by using the same mesh as for the airflow solution,
compute droplet solutions and impingement patterns with DROP3D
(seen as a plug-in module to FENSAP or any other flow code); then
use a flow visualizer to analyze the droplet solution and impinge-
ment patterns. For a distribution of droplet sizes, one computes as

many droplet solutions as there are size classes and postprocesses
the collection efficiencies from all classes to recover a compound
collection efficiency.

In the following, the different features of the flow solver are first
reviewed, and then the numerical ideas behind the implementation
of DROP3D are presented:in particular, the stabilized finite element
used, the three-dimensionalrecovery of the collectionefficiency, the
iterative solver, and the local time-stepping techniques.

A. FENSAP Navier-Stokes Module

FENSAP has capabilities for analyzing steady or unsteady com-
pressible turbulent flows, with or without recirculationregions, and
can revert to inviscid flow simulation as an option, whenever this
assumption proves sufficient in a given situation. The same flexibil-
ity is built in with respect to two-dimensional vs three-dimensional
simulations: the code being a fully three-dimensional one but with
a capability to analyze two-dimensional flows. The following al-
gorithmic developments in FENSAP make a three-dimensional
Navier-Stokes approach affordable and cost effective.

1) There are capabilities for structured and unstructured grids,
based on hexahedraltetrahedralfprismatic finite elements, with the
geometrical flexibility needed for complex industrial applications.

2) Implicit time-stepping methods are used combined with ef-
ficient iterative solvers and preconditioners (such as an algebraic
multigrid preconditioner) with optimized memory requirements.

3)Large portionsof the code have shared-memoryparallelization.

4) A k-€ high-Reynoldsnumber turbulence model with logarith-
mic finite elements at the walls considerably reduces the size of the
necessary grids for turbulentflows. In addition, low-Reynolds num-
ber models are available to examine the near-wall detailed physics
of flows over surfaces with sand-paper roughness’

5) There is arbitrary Lagrangian-Eulerian formulation for prob-
lems with changing boundaries?!' such as in ice-growth situations.

Moreover, the code is interfaced with an efficient anisotropic
mesh optimization methodology (MOM3D) package, also devel-
oped at the CFD Laboratory, that has been shown to give highly ac-
curate user-, solver-, and initial mesh-independentresults in two-22
and three dimensions >

B. DROP3D: Finite Element Method

A finite element Galerkin formulationis used to numerically dis-
cretize Egs. (1) and (2), with a streamline upwind Petrov-Galerkin
(SUPG)** term added. In the Galerkin approach, given a mesh over
a domain £2 and the space V), of continuous piecewise linear ele-
ments (quasi linear for bricks), the volume fraction " € V}, and the
droplet velocity u" € V) at time " are solutions of

no_ =1
j [l +V -(a”u")] odx +au(o",9) =0 (3)
a At

u' —u'~ 1
j [— +u" -Vu”] ~ydx +a,(", v) =] frydx
Q Q
@)
for all € V;,, w € V2. Here, f are the drag and gravity forces on
droplets and, thus, depend on # and u,,.

The expressions aq(+, -) and a,(-, -) are the SUPG stabilization
terms just mentioned. These terms are written as

ot — an—l
as(a, 9) =c, Z] [— +V '(a"u")] @ -V)pdx
K

At
K
%)
u _un—l
a,(u, y) =c, Z] [T +u"-Vu" —f] st (u" V) dx
x 'K
6)

with t¢ equal to hg/ /(1 + |u|?) and ¢, and ¢, parameters chosen
by the user. It is mainly the volume fraction that requires some
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extra stabilization because the velocity itself suffers little numerical
instability. As a result, the parameter ¢, is usually chosen smaller
than ¢, with ¢, usually in [0.1, 10] as opposed to ¢, in [1, 100] but
very often with ¢, = 2c¢,. The oscillationson the volume fractionare
mainly due to the highly nonlinear convective nature of the Eulerian
droplet model.

By examining three-dimensional results, it becomes evident that
artificial viscosity strictly along the droplets streamline direction, as
provided by an SUPG method, may not be enough for some situa-
tions. An example occurs when a relatively coarse grid isnot aligned
with a contact discontinuity appearing in the droplet solution. In
that case, the volume fraction of water is discontinuous while cross-
ing the contact discontinuity, but the droplet velocity is continuous
and aligned with that curve. The result of the SUPG stabilization
is the addition of artificial viscosity along the discontinuity curve
only, without any crosswind diffusion, although some stabilization
effects may stillbe needed in thatdirection.For these very rare occa-
sions where crosswind diffusionis needed (as observedin practice),
discontinuity-capturing terms®-2% have been added to the finite el-
ement formulation?” They are rarely used in our calculations and,
when used, are used with great moderation.

The terms a,(-, -) and ay, (-, -) are the discontinuity-captuing
crosswind diffusion terms and are expressed as

aju(a", do) =
[ o _ n—1
Clla Z] = A(tx +V -(a"u")] % (U, -V)edx (7)
x 'kl
a), (", dy) =
Pun _un—l
Cllu Z] N +u" -Vu" —f] TK(”ﬁu -V)ydx
x 'kl

®)

where ¢|, and ¢, are user-specified parameters as multiples of ¢,
and ¢, respectivelyand u, and uj, are calculated using the expres-
sion

Vx £0

. h
R vah if
u, =
if  Vx"=0 )

[Vxh[3
0

C. DROP3D: Recovering the Collection Efficiency

An important parameter that controlsthe accretion of ice on a sur-
face is the local collection efficiency f, that is, the normalized flux
of water on the surface. The droplet solution yields o and u every-
where in the solution domain, and the surface collection efficiency
[ can then be calculated as

B=-au-n (10)

where n is the surface normal into the computational domain at
mesh points on solid boundaries.

There is a difficulty in defining the normal n at a mesh point on
the wall. On an element face, the normal vector comes naturallyinto
play and is uniquely defined as follows:

X, XXx,
n—=—-—0—o—
[lx, xx,l

(1
where x =x(u, v) is a parametric representation of that face and x,
(x,) is the derivative of the parametric function with respect to u
(v). It is implicitly understood through that definition that the pa-
rameterization of the surface is continuously differentiable. For a
discretized boundary, however, at least three element (wall) faces
meet at any grid node on a wall, preventing in most cases the conti-
nuity of the parameterizationderivativeson edges between adjacent
faces.In the two-dimensionalimplementationof the Eulerian model
(DROP2D), collection efficiencies have been computed at the cen-

ter of the edge on the solid boundaries and then transformed into
values at the wall nodes by averaging the values on adjacent edges
using the length of the edges as weighting factors. That strategy
could probably be implemented in three dimensions, but a simpler
technique has been adopted >’

To turn around the normal discontinuity problem in three dimen-
sions, a discrete normal n;, has been defined at the grid node x; as
the normalized vector,

ny, = i/ ||| (12)
with

= >,

9K neighbor of x;
9K on the wall

a; xbl (13)

and 0 K a boundary face of the element K, and with a; and b; the
two edges on that face starting from x; such that their cross product
points into the computational domain. The vector #1;, is nothing but
the weighted average of the normal vectors of all of the wall faces
around the node x;, with the weights being equal to the area of the
faces. Hence, by refining of the grid, the vector n;, converges to
the actual normal n(x;), except on sharp edges of a CAD surface
where the continuous normal n is not defined, although the discrete
normal n, is. On such sharp edges of a CAD model one should
expect n;, to be at best the average of the normal vector on both
sides of the edge.

By replacing the continuous normal n by the discrete normal n,,
inEq. (10), a good approximationof the collectionefficiency can be
computed. According to the discussion on the value of n;, on sharp
edgesof a CAD geometry, some precautionshould be taken on such
sharp edges when interpreting the computed collection efficiency.

D. Iterative Solution and Local Time Stepping

The finite element formulation[Egs. (3) and (4)] is implicitin time
and requires the solution of a nonlinear system at each time step.
The systemis linearizedusing a Newton-Raphson method. Usually,
a linear system, whose matrix is the Jacobian of the nonlinear sys-
tem of equations, is solved for each Newton step. However, instead
of computing this Jacobian directly, an iterative solver is used that
requires only the productof the Jacobian with a vector, and then this
matrix-vector productis approximateddirectly by a finite difference
formula. This has been possible because the linear system is solved
through a generalized conjugate gradient iterative method based
on descent directions, in our case the generalized minimal residual
(GMRES) method. The combination of the Newton-Raphson with
the finite difference approximation of the Jacobian-vector product
is often called the nonlinear GMRES method 2

The nonlinear GMRES method is used in DROP3D in conjunc-
tion with a diagonal preconditioner. In general, 1-3 Newton iter-
ations, with 20-50 descent directions per time step, are sufficient
to guarantee the convergence of the iterative solver at each time
step. With such strategy it is possible to tackle three-dimensional
test cases (engine inlet and nacelle, aircraft nose and cockpit, wing,
etc.) with grids of several hundred thousand nodes using less than
half a gigabyte of RAM.

A steady solution of the Eulerian model is reached by iterating
in time. Steadiness rapidly occurs in the impingement area simply
becausetheinformationtravelsalong the streamlines from upstream
to downstream for the Eulerian model and the exposed surfaces are
located upstream. The critical region for convergence in time to
the steady state is the wake behind the geometry, where the water
droplets are more progressively,and hence more slowly, washed out.

To attain the steady-state faster over the entire computational
domain, a local time-stepping strategy has been implemented. It
consists in computing a local time step Atx on each element K, for
example, using

Ah
At[( = K

= 14
max(all 5. e/ Do) (14
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where A is the target Courant-Friedrichs-Lewy numberand At is
atruncationmaximal time step. Both A and At,,,, are specified by the
user, in practice of the order of 2-1000 and 100-1000, respectively,
depending on the stiffness of the problem.

The local time step is more or less set so that the information
associated with the solution of the Eulerian model travels locally
through A elements at each time step. Before its use in the scheme,
Eqgs. (3) and (4), the time step Aty is locally transported to neigh-
boring nodes by averagingthe Aty over all of the element K neigh-
boring a node using the volume of the element as a weighting
factor.

Figure 1 shows the evolution of the total catch efficiency (TCE)
as a function of the number of time steps fot the two-dimensional
cylinder test case, where each time step is 10-s CPU time. The
TCE is the integral of the collection efficiency coefficient over the
whole surface. In other words, the TCE is the total mass flux of
water impinging on the geometry, scaled by the liquid content of
the cloud (LWC) X U, . By comparing the variation of the TCE from
time step to time step with the norm (maximum and Euclidean) of
the local catch efficiency again from time step to time step (Fig. 1b),
it should be expected that the TCE is a good indicator of the code’s
convergence. That is, the convergence of the local catch efficiency
seems to be closely connected with the convergence of the global
catch efficiency. As can be seen from the graphs, four local time
steps are enough to guarantee the convergence of the TCE for that
simple example. The variation of the TCE from time step to time
step is of the order of 0.1% of the final TCE only after the first four
time steps. Usually some more iterations are done to account for
potential local variation of the collection efficiency that may not be
seen in the TCE.

To further improve the computing efficiency of DROP3D, a grid
coloring scheme has been implemented to parallelize the assembly
of the residual of the nonlinear system. This has proved sufficient
on shared-memory computers with less than 16 CPUs, inasmuch as
mostof the effortis spentin computingresidualsinside the nonlinear
GMRES routine.

IV. Validation Test Cases

Two testcases fromtheliteraturehavebeenselectedto validatethe
impingementcode. The first one is a two-dimensionalcylinder taken
from Ref. 5, and the second one is a three-dimensional sphere taken
from Bidwell and Mohler.” These test cases were selected because
the geometries are nonproprietary and fairly accurate experimental
data are availablein the public domain. The matrix of the validation
test case conditions is detailed in Table 1.

The two-dimensional cylinder and three-dimensional sphere ge-
ometries were built with B-spline surfaces and curves inside cir-
cular domains. To do so, the CAD system used is ICEM-CFD’s
DDN module, which is an integral part of a CAD/mesher package
commercialized by ICEM CFD Engineering. Inviscid airflow nu-
merical solution were obtained for the test cases using FENSAP, as
only droplet impingement is investigated in this paper. Of course,
as stressed in the Introduction, an inviscid flow solution would not
be sufficient for a complete icing analysis.

The meshes used for the calculations consist of bilinear hexahe-
dral elements: a 17,168-node mesh for the cylinder and a 201,735-
node mesh for the sphere (see Fig. 2). Inviscid flow solutions have
been obtained on both grids, and results are presented in the fol-
lowing subsections. Droplet solutions presentedin this section have
been calculated for MVD solutions and Langmuir-D distributions.
The complete details on the validation are given by Boutanios.?’

A. Two-Dimensional Cylinder

DROP3D was validated in two dimensions using experimental
results from Ref. 5 for impingement data on the surface of a two-
dimensional cylinder. The air and droplet flow parameters are given
in Table 1 in the column labeled “Cylinder.”

Figure 3 shows the pressure isolines for the inviscid airflow
around the two-dimensional cylinder. Figure 4 shows the collection
efficiency profiles for the MVD =16 um solution and the result-
ing solution of a Langmuir-D distribution with an MVD of 16 um,
respectively. The details of the Langmuir-D distribution are given
in Table 2. Not much difference can be seen, and the two solutions
are indeed similar. However, should one plot the collection effi-
ciency on the surface of the cylinder for both cases and compare to
experimental results,’ some differences come to light. Such a plot
is shown in Fig. 5, and it can be seen that the Langmuir-D distri-
bution is slightly more effective than the MVD solution in match-
ing the experimental data. The solution based on the Langmuir-D
distribution captures both maximum collection efficiency and im-
pingement limits values and stays within the experimental repeata-
bility range. The MVD solution, on the other hand, overestimates
the maximum impingement value, underestimates the impingement

Table 1 Matrix of validation test cases

Parameters Cylinder Sphere
Reference length, m 0.1016 0.1504
Airspeed, m/s 80 75
Static temperature,°C 12 7
Static pressure, Pa 89,867 95,840
MVD, pum 16.0 18.6

Table2 Langmuir-D distribution of droplet
diameters with an MVD of 16 ym as used
for the two-dimensional cylinder test case

Percentage Ratio of Droplet
LWC diameters diameter, m
5 0.31 5.0

10 0.52 8.3

20 0.71 11.4

30 1.00 16.0

20 1.37 21.9

10 1.74 27.8

5 2.22 35.5
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Fig. 2 Cylinder (left) and sphere mesh (right) for inviscid airflow solutions.

.

—X

Fig. 3 Pressure distribution for inviscid flow solution around the two-dimensional cylinder (left) and the three-dimensional sphere (right).

limits, and exceeds the experimental repeatability range in some ar-
eas. One can conclude that DROP3D is capable of providing quality
two-dimensional droplet impingement data and that the quality of
the results improves by using an adequate droplet size distribution
rather than simply the MVD of the distribution. This last conclusion
is not new and is also true with Lagrangian methods on such simple
geometries.*

B. Three-Dimensional Sphere

To validate the impingement module in three dimensions, exper-
imental results on a three-dimensional sphere® test case were used.
The experimental air and droplet flowfields parameters are given in
Table 1 in the “Sphere” column.

Aninviscidairflow solutionwas carried out using the mesh shown
in Fig. 2, with the pressure profile from this solution shown in
Fig. 3. Figure 6 shows the surface collection efficiency on the
sphere, as calculated in DROP3D for the MVD =18.6 um so-
lution and the Langmuir-D distribution with the same MVD, re-
spectively. The details of the Langmuir-D distribution are given
in Table 3. As with the two-dimensional cylinder, the solutions
look qualitatively similar. Figure 7 compares the experimental data
with both MVD and Langmuir-D distribution solutions. Again,
the Langmuir-D distribution is slightly better than the MVD so-
lution in matching the maximum collection efficiency and the im-
pingement limits. Both numerical curves show small excursions
outside the experimental range of repeatability, but the results are
quite satisfactory, particularly for the Langmuir-D distribution. The
discrepancies between numerical and experimental results can
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Fig. 4 Collection efficiency at the surface of a two-dimensional cylinder for one MVD = 16 pm solution (top) and a Langmuir-D distribution with

the same MVD (bottom).
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Fig. 5 Comparison of collection efficiency on the surface of the two-
dimensional cylinder for the Langmuir-D distribution and the MVD
solution to experimental data.

probably be reduced with a more appropriate droplet distribution
such as the one measured in the icing tunnel during the experiment.
Note the following comments about problems encountered with ex-
perimental data not specifically obtained or documented for CFD
validation.

1) The experimental range of repeatability reported was an aver-
age over the whole range of measurements and not a local range as
for the cylinder data. A more accurate estimate of the experimental

Table 3 Langmuir-D distribution of droplet
diameters with an MVD of 18.6 ym as used
for the three-dimensional sphere test case

Percentage Ratio of Droplet
LwC diameters diameter, m
5 0.31 5.8

10 0.52 9.7

20 0.71 13.2

30 1.00 18.6

20 1.37 25.5

10 1.74 324

5 2.22 413

range of repeatability would be desirable for better comparison to
numerical results.

2) The experimental data dates back to the mid-1950s, and re-
cent studies pointed to uncertaintiesin the data measurement tech-
niques’! resulting in over- and underestimation at different points
within the same set.

3) The exact droplet distribution found in the icing tunnel, again
as the experimental data dates back to the mid-1950s, is not given
and may not be known, so that the Langmuir-D distributionis a best
estimate of the actual distribution.

Theseremarksincreasethe level of confidencein DROP3D. Over-
all, one can say that the FENSAP-ICE droplet module, DROP3D,
is capable of providing quality results in three dimensions, at least
for similar geometries, given an adequate droplet distribution and
flow experimental conditions.
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Fig. 6 Collection efficiency at the surface of a three-dimensional sphere for one MVD = 18.6 ym solution (left) and a Langmuir-D distribution with

the same MVD (right).
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Fig. 7 Comparison of collection efficiency on the surface of the three-
dimensional sphere for the Langmuir-D distribution and the MVD so-
lution to experimental data.

V. Conclusions

The FENSAP-ICE three-dimensionaldropletimpingement mod-
ule, DROP3D, hasbeen shown to be a suitabletool to study waterim-
pingementover arbitrary aerodynamicsurfaces. The coderesults are
shown to be consistent with experimental data both in two and three
dimensions. The advantage of DROP3D over current Lagrangian
codes is in its Eulerian formulation, where the impingement phe-
nomenon is represented in a natural and appropriate way by a set
of partial differential equations. More physics can be added to the
formulation as needed, and no particle tracking has to be done,
avoiding particle localization problems and uncertainties arising in
three-dimensionalsituations.

It has been shown that MVD solutions give less accurate ap-
proximations of the dropletimpingementcoefficient and that better
results can consistently be obtained with diameter distributions that
approach the actual one.
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